栖息谷-管理人的网上家园

从海盗分宝石看双赢

[复制链接] 17
回复
2087
查看
打印 上一主题 下一主题
楼主
跳转到指定楼层
分享到:
发表于 2004-8-7 10:17:08 | 只看该作者 回帖奖励 |正序浏览 |阅读模式
这是我在智慧谷发表的帖子,没人回应也不知对不对。这好来这里向大家讨教一下。
以下是引用ppd6666在2003-11-20 12:41:00的发言: 一段流传了挺长时间的小智力题,但一直没有看到正确答案。 但我已经想出来啰,你呢?? ------------------------------------------------------------------------ 考考自己能否胜任年薪8万美金 据统计,在美国,在20分钟内能回答出这道题的人,平均年薪在8万美金以上,题目如下: 5个海盗抢到了100颗宝石,每一颗都一样的大小和价值连城。他们决定这么分: 1. 抽签决定自己的号码(1,2,3,4,5) 2. 首先,由1号提出分配方案,然后大家5人进行表决,当且仅当超过半数的人同意时,按照他的提案进行分配,否则将被扔入大海喂鲨鱼。 3. 如果1号死后,再由2号提出分配方案,然后大家4人进行表决,当且仅当超过半数的人同意时,按照他的提案进行分配,否则将被扔入大海喂鲨鱼。 4. 以次类推 条件: 每个海盗都是很聪明的人,都能很理智的判断得失,从而做出选择。 问题:第一个海盗提出怎样的分配方案才能够使自己的收益最大化? 

  

    一、为什么角色是海盗呢?

    二、为什么每颗宝石一样,而且价值连城呢?

    三、为什么要超过半数的人同意?

    四、为什么不行就要死呢?

    五、为什么每个海盗都是很聪明,都能很理智的判断得失呢?

  作为一道智力题,他采用这个严密的逻辑他要把我们引向何方呢?

  这个时候我开始否定我的答案。我使用因式分解法对上面的问题进行分析。我在第三个问题上找到了突破。   

   超过半数的人同意---要寻找两个伙伴,找谁呢?---我要靠什么去维系他们---伙伴之间的要求是什么---诚信---双赢---双方都感到公平,感到获得了最大的利益---了解对方。

   海盗---通过生命去获取物质,会以生命作为赌注。

   每个都聪明---每个都会在相对风险最低尽力去获取自己最大的利益。

   死---在获取最大利益时要将风险降到低点,同时也是要胁他人的手段。

   每颗宝石都一样,都价值连城---公平并不是平均,而是在客观条件下获得最大的值。

  在以上的条件上我在获取到最大利益时要给我的合作伙伴最大的利益,我要清楚我的合作伙伴他们心目中最大的利益是多少。这个时候我要做的是换位思考,注意到每个人都像我一样聪明,所以我能想到的他们也能想到,但是我现在处在由我来分配的优势地位。另外一点换位思考时要全面。要换位思考。  如果我是2,1会怎么做?在这种情况下我会得到多少?如果我反对,别人会怎么做,我有没有可能得到更多?   如果我是3呢?4呢?5呢?

  3:当轮到我来分配时我达到了最大值 50,因为这个时候我必须要给4 50,否则他会与我同归于尽。如果1或2 给我25的话,那么我就机会得到50

  4:当轮到3时我达到了最大值 50,如果他不给我,我就与他同归于尽。如果1或2 给我25的话,那么我就机会得到50

  5:当轮到3时我会达到最小值 0,当轮到4时,我达到了最大值 100,但可能性很小,因为他们都那么聪明。所以我要把希望放在1和2身上。1和2要达到最大值他们都要给我25。 2他必须要给我25,因为他要给3或4 50,余下的50他必须要跟我一部分,否则我会什么都不要,但他要去死。

2:我的最大值是25,如果我分我会给3或4 50,然后与5平分。如果1要达到最大值,他一定不会给3或4,因为他们最大值都是50。但他必须要达到我的要求,否则由我自己来分。

到这里,我想大家都知道了应该选择哪两个伙伴才能达到双赢。

总结: 一、诚信就是双赢之道

二、双赢不是追求双方利益数量的平均数,而是在客观条件下使双方的利益达到最大化,在客观条件下双方都得到满足。

三、要达到双赢,必须要在客观条件下分析对方可能的最大利益是多少。

四、要了解对方必须要进行换位思考。

大家有什么意见,欢迎提出来。

[em06][em06][em06]
18
发表于 2007-11-29 23:15:38 | 只看该作者

正确答案是:

97,0,1,2,0

或者97,0,1,0,2

17
发表于 2004-8-26 10:16:50 | 只看该作者

按照上面理论来反向推理:

1、当轮到4号海盗提出方案时候,4号海盗可获得100颗宝石,5号一颗也没有。因为4号自己投票同意。

2、这时如果3号提出的分配方案给5号1颗宝石,可获得5号支持,4号将一无所有

3、同样,2号的分配方案只要给4号一颗宝石,就可获得4号支持,3号和5号将一无所有

4、所以,最终方案是只要一号提出分给3号和5号各一颗宝石,自己获得98块宝石。该方案可获得通过。

最终答案应该是 1号98颗 3号1颗 5号1颗 2号0颗 4号0颗

有点意思、哈哈!

16
发表于 2004-8-26 09:29:35 | 只看该作者
当然包括了呀,还用问
15
发表于 2004-8-25 20:49:17 | 只看该作者

提问:

1、超过半数指5人的一半还是剩下人数的一半?

2、包括提方案的人吗?

14
发表于 2004-8-25 16:05:40 | 只看该作者

海盗的难题

  数学的逻辑有时会导致看来十分怪异的结论。

  10名海盗抢得了窖藏的100块金子,并打算瓜分这些战利品。这是一些讲民主的海盗(当然是他们自己特有的民主),他们的习惯是按下面的方式进行分配:最厉害的一名海盗提出分配方案,然后所有的海盗(包括提出方案者本人)就此方案进行表决。如果50%或更多的海盗赞同此方案,此方案就获得通过并据此分配战利品。否则提出方案的海盗将被扔到海里,然后下提名最厉害的海盗又重复上述过程。

  所有的海盗都乐于看到他们的一位同伙被扔进海里,不过,如果让他们选择的话,他们还是宁可得一笔现金。他们当然也不愿意自己被扔到海里。所有的海盗都是有理性的,而且知道其他的海盗也是有理性的。此外,没有两名海盗是同等厉害的——这些海盗按照完全由上到下的等级排好了座次,并且每个人都清楚自己和其他所有人的等级。这些金块不能再分,也不允许几名海盗共有金块,因为任何海盗都不相信他的同伙会遵守关于共享金块的安排。这是一伙每人都只为自己打算的海盗。

  最凶的一名海盗应当提出什么样的分配方案才能使他获得最多的金子呢?

  为方便起见,我们按照这些海盗的怯懦程度来给他们编号。最怯懦的海盗为1号海盗,次怯懦的海盗为2号海盗,如此类推。这样最厉害的海盗就应当得到最大的编号,而方案的提出就将倒过来从上至下地进行。

  分析所有这类策略游戏的奥妙就在于应当从结尾出发倒推回去。游戏结束时,你容易知道何种决策有利而何种决策不利。确定了这一点后,你就可以把它用到倒数第2次决策上,如此类推。如果从游戏的开头出发进行分析,那是走不了多远的。其原因在于,所有的战略决策都是要确定:“如果我这样做,那么下一个人会怎样做?”因此在你以下海盗所做的决定对你来说是重要的,而在你之前的海盗所做的决定并不重要,因为你反正对这些决定也无能为力了。

  记住了这一点,就可以知道我们的出发点应当是游戏进行到只剩两名海盗——即1号和2号——的时候。这时最厉害的海盗是2号,而他的最佳分配方案是一目了然的:100块金子全归他一人所有,1号海盗什么也得不到。由于他自己肯定为这个方案投赞成票,这样就占了总数的50%,因此方案获得通过。

  现在加上3号海盗。1号海盗知道,如果3号的方案被否决,那么最后将只剩2个海盗,而1号将肯定一无所获——此外,3号也明白1号了解这一形势。因此,只要3号的分配方案给1号一点甜头使他不至于空手而归,那么不论3号提出什么样的分配方案,1号都将投赞成票。因此3号需要分出尽可能少的一点金子来贿赂1号海盗,这样就有了下面的分配方案:3号海盗分得99块金子,2号海盗一无所获,1号海盗得1块金子。

  4号海盗的策略也差不多。他需要有50%的支持票,因此同3号一样也需再找一人做同党。他可以给同党的最低贿赂是1块金子,而他可以用这块金子来收买2号海盗。因为如果4号被否决而3号得以通过,则2号将一文不名。因此,4号的分配方案应是:99块金子归自己,3号一块也得不到,2号得1块金子,1号也是一块也得不到。

  5号海盗的策略稍有不同。他需要收买另两名海盗,因此至少得用2块金子来贿赂,才能使自己的方案得到采纳。他的分配方案应该是:98块金子归自己,1块金子给3号,1块金子给1号。

  这一分析过程可以照着上述思路继续进行下去。每个分配方案都是唯一确定的,它可以使提出该方案的海盗获得尽可能多的金子,同时又保证该方案肯定能通过。照这一模式进行下去,10号海盗提出的方案将是96块金子归他所有,其他编号为偶数的海盗各得1块金子,而编号为奇数的海盗则什么也得不到。这就解决了10名海盗的分配难题。

  最后要说明的是,我的脑袋没有这么牛想出这么恐怖的逻辑。我仅仅是转述著名数学家和经济学家,加利福尼亚州帕洛阿尔托的Stephen M. Omohundro在1998年的论文。

13
发表于 2004-8-24 20:06:50 | 只看该作者

两个问题

1、是剩下的半数还是5人的半数?

2、半数包括他自己吗?

12
发表于 2004-8-24 19:58:46 | 只看该作者
可以公布结果吗?
11
发表于 2004-8-24 19:58:03 | 只看该作者
可以公布结果吗?
10
发表于 2004-8-22 22:43:39 | 只看该作者

98 0 1 0 1

98 0 1 1 0

不知道可不可行。。。。。。。我觉得从后往前推会好点,也就是说先假设只剩下最后两个人。。。。。。。对不对???

使用高级回帖 (可批量传图、插入视频等)快速回复

您需要登录后才可以回帖 登录 | 加入

本版积分规则   Ctrl + Enter 快速发布  

发帖时请遵守我国法律,网站会将有关你发帖内容、时间以及发帖IP地址等记录保留,只要接到合法请求,即会将信息提供给有关政府机构。
快速回复 返回顶部 返回列表